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Abstract

This is a short introduction to Kolmogorov complexity and information
theory. It covers the concepts that were essential to my master’s the-
sis [Nan03]1 on machine learning. The interested reader is referred to
the literature, especially the textbooks [CT91] and [LV97] which cover
the fields of information theory and Kolmogorov complexity in depth and
with all the necessary rigor. They are well to read and require only a
minimum of prior knowledge.

Kolmogorov complexity. The concept of Kolmogorov complexity was de-
veloped independently and with different motivation by Andrei N. Kolmogorov
[Kol65], Ray Solomonoff [Sol64] and Gregory Chaitin [Cha66], [Cha69].2

The Kolmogorov complexity C(s) of any binary string s ∈ {0, 1}n is the length of C(·)
the shortest computer program s∗ that can produce this string on the Universal
Turing Machine UTM and then halt. In other words, on the UTM C(s) bits of UTM
information are needed to encode s. The UTM is not a real computer but an
imaginary reference machine. We don’t need the specific details of the UTM.
As every Turing machine can be implemented on every other one, the minimum
length of a program on one machine will only add a constant to the minimum
length of the program on every other machine. This constant is the length of the
implementation of the first machine on the other machine and is independent
of the string in question. This was first observed in 1964 by Ray Solomonoff.

Experience has shown that every attempt to construct a theoretical model of
computation that is more powerful than the Turing machine has come up with
something that is at the most just as strong as the Turing machine. This has
been codified in 1936 by Alonzo Church as Church’s Thesis: the class of algo-
rithmically computable numerical functions coincides with the class of partial
recursive functions. Everything we can compute we can compute by a Turing
machine and what we cannot compute by a Turing machine we cannot compute
at all. This said, we can use Kolmogorov complexity as a universal measure
that will assign the same value to any sequence of bits regardless of the model
of computation, within the bounds of an additive constant.
1 online available at http://volker.nannen.com/work/mdl/
2 Kolmogorov complexity is sometimes also called algorithmic complexity and Turing com-

plexity. Though Kolmogorov was not the first one to formulate the idea, he played the
dominant role in the consolidation of the theory.
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Incomputability of Kolmogorov complexity. Kolmogorov complexity is
not computable. It is nevertheless essential for proving existence and bounds
for weaker notions of complexity. The fact that Kolmogorov complexity cannot
be computed stems from the fact that we cannot compute the output of every
program. More fundamentally, no algorithm is possible that can predict of every
program if it will ever halt, as has been shown by Alan Turing in his famous
work on the halting problem [Tur36]. No computer program is possible that,
when given any other computer program as input, will always output true if
that program will eventually halt and false if it will not. Even if we have a
short program that outputs our string and that seems to be a good candidate for
being the shortest such program, there is always a number of shorter programs
of which we do not know if they will ever halt and with what output.

Plain versus prefix complexity. Turing’s original model of computation
included special delimiters that marked the end of an input string. This has
resulted in two brands of Kolmogorov complexity:

plain Kolmogorov complexity: the length C(s) of the shortest binary C(·)
string that is delimited by special marks and that can compute x on
the UTM and then halt.

prefix Kolmogorov complexity: the length K(s) of the shortest binary K(·)
string that is self-delimiting [LV97] and that can compute x on the
UTM and then halt.

The difference between the two is logarithmic in C(s): the number of extra bits
that are needed to delimit the input string. While plain Kolmogorov complexity
integrates neatly with the Turing model of computation, prefix Kolmogorov
complexity has a number of desirable mathematical characteristics that make
it a more coherent theory. The individual advantages and disadvantages are
described in [LV97]. Which one is actually used is a matter of convenience. We
will mostly use the prefix complexity K(s).

Individual randomness. A. N. Kolmogorov was interested in Kolmogorov
complexity to define the individual randomness of an object. When s has no
computable regularity it cannot be encoded by a program shorter than s. Such
a string is truly random and its Kolmogorov complexity is the length of the
string itself plus the commando print3. And indeed, strings with a Kolmogorov
complexity close to their actual length satisfy all known tests of randomness. A
regular string, on the other hand, can be computed by a program much shorter
than the string itself. But the overwhelming majority of all strings of any length
are random and for a string picked at random chances are exponentially small
that its Kolmogorov complexity will be significantly smaller than its actual
length.

This can easily be shown. For any given integer n there are exactly 2n binary
strings of that length and 2n − 1 strings that are shorter than n: one empty
string, 21 strings of length one, 22 of length two and so forth. Even if all strings
shorter than n would produce a string of length n on the UTM we would still
3 Plus a logarithmic term if we use prefix complexity
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be one string short of assigning a C(s) < n to every single one of our 2n strings.
And if we want to assign a C(s) < n− 1 we can maximally do so for 2n−1 − 1
strings. And for C(s) < n − 10 we can only do so for 2n−10 − 1 strings which
is less than 0.1% of all our strings. Even under optimal circumstances we will
never find a C(s) < n− c for more than 1

2c of our strings.

Conditional Kolmogorov complexity. The conditional Kolmogorov com-
plexity K(s|a) is defined as the shortest program that can output s on the UTM K(·|·)
if the input string a is given on an auxiliary tape. K(s) is the special case K(s|ε)
where the auxiliary tape is empty.

The universal distribution. When Ray Solomonoff first developed Kol-
mogorov complexity in 1964 he intended it to define a universal distribution
over all possible objects. His original approach dealt with a specific problem of
Bayes’ rule, the unknown prior distribution. Bayes’ rule can be used to cal-
culate P (m|s), the probability for a probabilistic model to have generated the
sample s, given s. It is very simple. P (s|m), the probability that the sample will
occur given the model, is multiplied by the unconditional probability that the
model will apply at all, P (m). This is divided by the unconditional probability
of the sample P (s). The unconditional probability of the model is called the
prior distribution and the probability that the model will have generated the
data is called the posterior distribution.

P (m|s) =
P (s|m) P (m)

P (s)
(1)

Bayes’ rule can easily be derived from the definition of conditional probability:

P (m|s) =
P (m, s)
P (s)

(2)

and

P (s|m) =
P (m, s)
P (m)

(3)

The big and obvious problem with Bayes’ rule is that we usually have no idea
what the prior distribution P (m) should be. Solomonoff suggested that if the
true prior distribution is unknown the best assumption would be the universal
distribution 2−K(m) where K(m) is the prefix Kolmogorov complexity of the
model4. This is nothing but a modern codification of the age old principle that
is wildly known under the name of Occam’s razor: the simplest explanation is
the most likely one to be true.

Entropy. Claude Shannon [Sha48] developed information theory in the late
1940’s. He was concerned with the optimum code length that could be given to
different binary words w of a source string s. Obviously, assigning a short code
4 Originally Solomonoff used the plain Kolmogorov complexity C(·). This resulted in an

improper distribution 2−C(m) that tends to infinity. Only in 1974 L.A. Levin introduced
prefix complexity to solve this particular problem, and thereby many other problems as
well [Lev74].
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length to low frequency words or a long code length to high frequency words
is a waste of resources. Suppose we draw a word w from our source string s
uniformly at random. Then the probability p(w) is equal to the frequency of w
in s. Shannon found that the optimum overall code length for s was achieved
when assigning to each word w a code of length − log p(w). Shannon attributed
the original idea to R.M. Fano and hence this code is called the Shannon-Fano
code. When using such an optimal code, the average code length of the words
of s can be reduced to

H(s) = −
∑
w∈s

p(w) log p(w) (4)

where H(s) is called the entropy of the set s. When s is finite and we assign a H(·)
code of length − log p(w) to each of the n words of s, the total code length is

−
∑
w∈s

log p(w) = n H(s) (5)

Let s be the outcome of some random process W that produces the words w ∈ s
sequentially and independently, each with some known probability p(W = w) > 0.
K(s|W ) is the Kolmogorov complexity of s given W . Because the Shannon-Fano
code is optimal, the probability that K(s|W ) is significantly less than nH(W )
is exponentially small. This makes the negative log likelihood of s given W a
good estimator of K(s|W ):

K(s|W ) ≈ n H(W )

≈
∑
w∈s

log p(w|W )

= − log p(s|W )

(6)

Relative entropy. The relative entropy D(p||q) tells us what happens when D(·||·)
we use the wrong probability to encode our source string s. If p(w) is the true
distribution over the words of s but we use q(w) to encode them, we end up
with an average of H(p) + D(p||q) bits per word. D(p||q) is also called the
Kullback Leibler distance between the two probability mass functions p and q.
It is defined as

D(p||q) =
∑
w∈s

p(w) log
p(w)
q(w)

(7)

Fisher information. Fisher information was introduced into statistics some
20 years before C. Shannon introduced information theory [Fis25]. But it was
not well understood without it. Fisher information is the variance of the score
V of the continuous parameter space of our models mk. This needs some expla-
nation. At the beginning of this thesis we defined models as binary strings that
discretize the parameter space of some function or probability distribution. For
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the purpose of Fisher information we have to temporarily treat a model mk as a
vector in Rk. And we only consider models where for all samples s the mapping
fs(mk) defined by fs(mk) = p(s|mk) is differentiable. Then the score V can be
defined as

V =
∂

∂ mk
ln p(s|mk)

=
∂

∂ mk
p(s|mk)

p(s|mk)

(8)

The score V is the partial derivative of ln p(s|mk), a term we are already familiar
with. The Fisher information J(mk) is J(·)

J(mk) = Emk

[
∂

∂ mk
ln p(s|mk)

]2

(9)

Intuitively, a high Fisher information means that slight changes to the param-
eters will have a great effect on p(s|mk). If J(mk) is high we must calculate
p(s|mk) to a high precision. Conversely, if J(mk) is low, we may round p(s|mk)
to a low precision.

Kolmogorov complexity of sets. The Kolmogorov complexity of a set of
strings S is the length of the shortest program that can output the members
of S on the UTM and then halt. If one is to approximate some string s with
α < K(s) bits then the best one can do is to compute the smallest set S with
K(S) ≤ α that includes s. Once we have some S 3 s we need at most log |S|
additional bits to compute s. This set S is defined by the Kolmogorov structure
function hs(·)

hs(α) = min
S

[
log |S| : S 3 s, K(S) ≤ α

]
(10)

which has many interesting features. The function hs(α) + α is non increasing
and never falls below the line K(s)+O(1) but can assume any form within these
constraints. It should be evident that

hs(α) ≥ K(s)−K(S) (11)

Kolmogorov complexity of distributions. The Kolmogorov structure func-
tion is not confined to finite sets. If we generalize hs(α) to probabilistic models
mp that define distributions over R and if we let s describe a real number, we
obtain

hs(α) = min
mp

[
− log p(s|mp) : p(s|mp) > 0, K(mp) ≤ α

]
(12)

where − log p(s|mp) is the number of bits we need to encode s with a code that
is optimal for the distribution defined by mp. Henceforth we will write mp when
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the model defines a probability distribution and mk with k ∈ N when the model
defines a probability distribution that has k parameters. A set S can be viewed
as a special case of mp, a uniform distribution with

p(s|mp) =


1
|S| if s ∈ S

0 if s 6∈ S
(13)

Minimum randomness deficiency. The randomness deficiency of a string s
with regard to a model mp is defined as δ(·|mp)

δ(s|mp) = − log p(s|mp)−K( s|mp, K(mp) ) (14)

for p(s) > 0, and ∞ otherwise. This is a generalization of the definition given
in [VV02] where models are finite sets. If δ(s|mp) is small, then s may be
considered a typical or low profile instance of the distribution. s satisfies all
properties of low Kolmogorov complexity that hold with high probability for the
support set of mp. This would not be the case if s would be exactly identical
to the mean, first momentum or any other special characteristic of mp.

Randomness deficiency is a key concept to any application of Kolmogorov com-
plexity. As we saw earlier, Kolmogorov complexity and conditional Kolmogorov
complexity are not computable. We can never claim that a particular string s
does have a conditional Kolmogorov complexity

K(s|mp) ≈ − log p(s|mp) (15)

The technical term that defines all those strings that do satisfy this approxima-
tion is typicality, defined as a small randomness deficiency δ(s|mp). typicality

Minimum randomness deficiency turns out to be important for lossy data com-
pression. A compressed string of minimum randomness deficiency is the most
difficult one to distinguish from the original string. The best lossy compression
that uses a maximum of α bits is defined by the minimum randomness deficiency
function βs(·)

βs(α) = min
mp

[
δ(s|mp) : p(s|mp) > 0, K(mp) ≤ α

]
(16)

Minimum Description Length. The Minimum Description Length or short
MDL of a string s is the length of the shortest two-part code for s that uses MDL
less than α bits. It consists of the number of bits needed to encode the model
mp that defines a distribution and the negative log likelihood of s under this
distribution. λs(·)

λs(α) = min
mp

[
− log p(s|mp) + K(mp) : p(s|mp) > 0, K(mp) ≤ α] (17)
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It has recently been shown by Nikolai Vereshchagin and Paul Vitányi in [VV02]
that a model that minimizes the description length also minimizes the random-
ness deficiency, though the reverse may not be true. The most fundamental
result of that paper is the equality

βs(α) = hs(α) + α−K(s) = λs(α)−K(s) (18)

where the mutual relations between the Kolmogorov structure function, the
minimum randomness deficiency and the minimum description length are pinned
down, up to logarithmic additive terms in argument and value.

References

[Cha66] Gregory J. Chaitin. On the length of programs for computing finite
binary sequences. J. Assoc. Comput. Mach., 13:547–569, 1966.

[Cha69] Gregory J. Chaitin. On the length of programs for computing finite
binary sequences: statistical considerations. J. Assoc. Comput. Mach.,
16:145–159, 1969.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information The-
ory. John Wiley & Sons, Inc., New York, 1991.

[Fis25] R.A. Fisher. Theory of statistical estimation. Proc. Cambridge Phil.
Society, 22:700–725, 1925.

[Kol65] Andrei Nikolaevich Kolmogorov. Three approaches to the quantitative
definition of information. Problems of Information Transmission, 1:1–
7, 1965.

[Lev74] L.A. Levin. Laws of information conservation (non-growth) and aspects
of the foundation of probability theory. Problems Inform. Transmis-
sion, 10:206–210, 1974.
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