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Abstract—Methods for discerning and measuring Kolmogorov
Complexity are discussed and their relationships explored.  A
computationally efficient method of using Lempel Ziv 78
Universal compression algorithm to estimate complexity is
introduced.

I. INTRODUCTION

olmogorov Complexity is a fundamental measure of
information with growing applications and importance

[2], [4].     Estimation of Kolmogorov Complexity is key to
objective information system monitoring and analysis.
References [7], [2]-[4] contain many applications of
Kolmogorov Complexity; also see [1] for background on this
subject.  All applications of Kolmogorov Complexity are
limited due to its incomputable nature and are impacted by
improvements or innovations in the ability to estimate
Kolmogorov Complexity well.

In this paper we review a generic method for estimating
complexity – the Lempel-Ziv 78 (LZ78) [11] universal
compression algorithm, discuss its limitations in estimating
complexity, and derive a computationally efficient method of
using this algorithm to estimate complexity.  We then develop
two measures for the estimation of complexity – power
spectral density based estimation and expected time of
sequence production.  We discuss the relationships between
these methods of estimation and other estimators.
Additionally we introduce a third parameter related to
complexity – SPAN.  Relationships between these measures of
complexity are compared and discussed, and their
relationships to compression-based estimates of Kolmogorov
Complexity are explored.

II. KOLMOGOROV COMPLEXITY

A. Background
Kolmogorov Complexity is a measure of descriptive

complexity contained in an object. It refers to the minimum
length of a program such that a universal computer can
generate a specific sequence.  A good introduction to
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NY. Lockheed Martin Systems Integration Owego, NY, funded this work,
technically transitioning ideas developed under DARPA Information
Assurance and Fault Tolerant Networks Projects contract F30602-01-C-0182
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Directorate.

Kolmogorov Complexity is contained in [1] with a solid
treatment in [7]. Kolmogorov Complexity is related to
Shannon entropy, in that the expected value of K(x) for a
random sequence is approximately the entropy of the source
distribution for the process generating the sequence. However,
Kolmogorov Complexity differs from entropy in that it relates
to the specific string being considered rather than the source
distribution.  Kolmogorov Complexity can be described as
follows, where � represents a universal computer, p represents
a program, and x represents a string:
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Random strings have rather high Kolmogorov Complexity –
on the order of their length, as patterns cannot be discerned to
reduce the size of a program generating such a string.  On the
other hand, strings with a large amount of structure have fairly
low complexity.  Universal computers can be equated through
programs of constant length, thus a mapping can be made
between universal computers of different types. The
Kolmogorov Complexity of a given string on two computers
differs by known or determinable constants.  The Kolmogorov
Complexity K(y|x) of a string y, given string x as input is
described by the equation below:
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where l(p) represents program length p and � is a particular
universal computer under consideration.  Thus, knowledge or
input of a string x may reduce the complexity or program size
necessary to produce a new string y.

   The major difficulty with Kolmogorov Complexity is that
you can’t compute it.  Any program that produces a given
string is an upper bound on the Kolmogorov Complexity for
this string, but you can’t compute the lower bound.

III. COMPLEXITY ESTIMATION

A. Empirical Entropy
Entropy is calculated from the source distribution producing a
given string [10].  When the source distribution is not known,
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calculation of entropy is not possible until a distribution is
measured.  This is essentially the same problem as estimating
the Kolmogorov Complexity of a given string in that we are
trying to find the smallest set (or probability density function)
from which a string is a typical element.
    Empirical Entropy is entropy measured from the data itself.
Considering the case of binary sequences, first order empirical
entropy compares the number of ones and zeros and develops
a probability density function.  Second order empirical entropy
notes the frequency of occurrence of pairs 01, 11, 10, 00.
Third and following order empirical entropies develop
probability density functions based on larger length patterns.
    Empirical entropy as a measure of complexity can be
extremely inaccurate.  For example, the string
101010101010..., N times has maximal first order empirical
entropy since it has an equal number of ones and zeros, yet
intuitively this string is extremely simple in descriptive
complexity.  Still, even crude complexity estimation such as
this has been shown to be useful in classifying data and
behavior (see for example [6]).

B. Lempel Ziv 78 for Complexity Estimation
  LZ78 has been used as an estimator for complexity for
various applications, including DNA sequence analysis [9] as
well as information security [3].  Kolmogorov Complexity is
the ultimate compression bound for a given finite string, thus a
natural choice for estimation of complexity is the class of
universal compression techniques.  In [11], Lempel and Ziv
define a measure of complexity for finite sequences rooted in
the ability to produce these sequences from simple copy
operations.  The LZ78 universal compression algorithm
harnesses this principle to yield a universal compression
algorithm that can approach the entropy of an infinite sequence
produced by an ergodic source.  However, as discussed in [5],
any universal sequential code will fall short for some
individual sequences.

Figure 1:  LZ78 Compression of Circular Right Shifts of a String.  Simple
shifts of a string result in significant variation in the strings compression.

For example, consider the binary string created by
concatenating the first 52 unique binary strings together (from
the sequence 0, 1, 00, 01, 10, 11, 000 …) is compressed using
LZ78.  This string of length 218 bits can be encoded using
LZ78 in 315 bits – a net loss in compression.  However, as
shown in Figure 1, simple circular right shifts changes the
compressibility of this string dramatically – a variation of up to
28 bits.  Since a circular right is a very simple operation that
can be implemented in a Turing machine, the Kolmogorov
complexity of a string undergoing such a shift should change
minimally.  Thus, better estimators than LZ78 must be found
to truly harness complexity as a usable parameter.

C. Improved LZ78 Complexity Estimation
    Despite the difficulties discussed above, LZ78 is among the
more accessible universal complexity estimators.  However,
complexity estimation using LZ78 usually amounts to
performing the entire compression process and comparing
inverse compression ratios as a measure of complexity.  In
fact, the simple Lempel Ziv partition contains enough data to
estimate complexity without performing the entire
compression encoding process.
    Central to the LZ78 algorithm is the partitioning scheme
introduced by Ziv and Lempel in [8].  The LZ78 algorithm
partitions a string into prefixes that it hasn’t seen before,
forming a codebook that will (given a long enough string with
enough repetition) enable long strings to be encoded with
small indexes.  Consider an example to illustrate how this
algorithm works:  LZ partitioning of the string:

1011010010011010010011101001001100010

is performed by inserting commas each time a sub-string that
has not yet been identified is seen.  The following partition
results:

1,0,11,01,00,10,011,010,0100,111,01001,001,100,010.

This can be represented by the binary tree shown in Figure 2.

0 1

0 0 11

Tree Partition: 1,0,11,01,00,10,011,010,0100,111,01001,001,100,010

Figure 2:  LZ78 binary tree representation of the partition for the binary
string: 1011010010011010010011101001001100010.  Nodes contained in
the partition are colored in black.
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The nodes marked in black of the five level tree shown are
nodes contained in the LZ78 partition of the example string.
Nodes that are not filled in indicate code words or phrases that
are not contained in the LZ78 partition.  Each node or phrase
occurs exactly once in the string with the exception of the last
phrase which may be a repeat of a previously seen node.  Good
compression (low complexity estimation) results when the
LZ78 partition contains a deep, sparse tree, while poor
compression (high complexity estimation) results from strings
that are less deep and more completely populated at each level
    Maximum compression of LZ78 is achieved if all code
words are children of the same branch, for example, the string:

1101011011101101011001011000

 partitioned as 1,10,101,1011,10110,101100,1011000
will be highly compressed by LZ78.   However, the string

1010110100100101110111000001

= 1,0,10,11,01,00,100, 101, 110, 111, 000, 001

will not be compressed by LZ78. The binary trees
corresponding to these cases are shown in Figure 3.

0 1

0 0 11

0 1

0 0 11

1,10,101,1011,10110,101100,1011000 1,0,10,11,01,00,100,101,110,111,000,001

a. b.

Figure 3.  LZ78 partition for a:  highly compressible string and b.  string not
compressed by LZ78.  Nodes contained in the partition are colored in black.

Since the performance of LZ78 will be determined by the
partition, by concentrating exclusively on the tree partition
aspects of the algorithm we can achieve better efficiency when
using LZ78 to estimate complexity.  The essential metric is the
number of phrases in the partition.
    The minimum number of sub-strings (commas) in an LZ78
partition is the number M such that each sub string is one bit
longer than the previous sub string:
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Solving this quadratic equation and taking the positive solution
for M we have:
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For strings of any substantial length, the constant terms
become insignificant and a good estimate of the lower bound
results from ignoring the additive constant terms:

LM 2�

Since we know the minimal number of phrases a string of
length L can have, we can normalize the number of phrases in
the LZ78 partition based on this minimum for use in defining a
normalized complexity estimator.  We define a the metric C as
an estimator of complexity using the LZ78 partition given a
string of length L bits and an LZ78 partition of M phrases:

L
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2
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This metric enables use of the LZ78 partitioning algorithm to
estimate complexity, normalized by length, providing an
estimator similar to compression ratio, but without the need for
the overhead to actually complete the LZ78 compression.
Under this metric complexity strings a and b from Figure 3
would have a complexity estimate metrics shown below.
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Thus the complexity estimation metric for string b is almost
twice as high as that for string a.  This metric has the desirable
properties of LZ78 based complexity estimation without the
need for completing the entire compression process as well as
a normalized by length estimator with intuitively pleasing scale
– higher numbers represent higher complexity.

IV. ALTERNATE APPROACHES

A binary sequence of n-bits probably has little meaning if
considered “in a vacuum” so to speak. Rather, meaning
attaches when the sequence is viewed in a context of genesis.
As discussed previously, one such framework is that of
Kolmogorov complexity. What this framework requires is the
least complex Turing machine that could produce the
sequence. This framework is certainly a fundamental and
intellectually satisfying framework as it provides a metric of
complexity that requires no reference outside of itself. The
computation, or assessment of complexity, is, however,
impossible to perform for general n.

Therefore, we are motivated to look at other, more
utilitarian, probes of complexity in the hope that they will
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serve adequately and, in some limit, be related to the
Kolmogorov complexity assessment.

A. SPAN
The concept of SPAN relates to other forms of complexity

estimation.  In their groundbreaking paper leading to
development of ubiquitous compression algorithms Lempel
and Ziv relate complexity to the ability to produce subsequent
words in a string from previous words through simple copy
operations with modification only of a single, last bit [8].  The
SPAN concept relates to producing subsequent string
components from the string’s history but considers more
intricate operations than simple copy operations.

Turing machines are infinite state machines since a Turing
memory tape has unlimited storage. Finite state machines are,
of course, bounded by the limitations of the physical and there
are a number of paradigms of sequence generators in this
machine class. The popularity of these paradigms is directly
tied to their ease of implementation and their contribution to
making important technical operations happen with little
hardware and cost. One popular paradigm is the generation of
sequences from a seed sequence. One probe of a sequence can
thus be to determine the extent, or span, of the seed. The span
is easily calculated and, to some extent, seems intuitively
intertwined with sequence complexity.

Specifically, let us denote the zero/one n-bit binary
sequence as

n
sss ,...,,

21

We say the sequence has span=k if and only if k is the
smallest natural number for which there exists a Boolean
function, f, such that

nkissfs kiii ,...,1,),...,( 1 ���
��

Note that the span is extremely sensitive to slight changes in
a bit stream.

Figure 4:  Probability density function as a function of  SPAN for 15 bit
sequences.

The span is thus a brittle measure. Also, the span is not
invariant to sequence reversal. For example, the span of the
sequence

10000

is 1 but the span of the reversed sequence

00001

is 4.

Figure 4 is the probability density function (pdf) of the
spans computed for a large set of 15-bit sequences generated
(pseudo) randomly.

B. Waiting Time
A binary sequence has to come from somewhere. Moving

from the deterministic genesis viewpoint to that of
probabilistic genesis, we suggest that another dimension of
consideration is the determination of the mean waiting time
that a balanced binary Bernoulli source would take to first
produce a particular n-bit sequence. Using results developed in
[1] we calculate the mean waiting time, T, for the n-bit
sequence (1) by evaluating T(2) where
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C. Power Spectral Density
1) PSI

  As previously discussed, due to its non-computable nature,
estimates of K(x) are difficult.  Numerous techniques for
estimating K(x) are discussed in [4].  The task of estimating
K(x) is related to the task of assessing string structure. A new
primitive approach to this related issue is introduced based on
the power spectral density of a string’s auto-correlation.  This
approach highlights the ability to gain knowledge of K(x)
without any higher knowledge about the system producing
string x or the meaning of the information.

  Recognizing that the complexity of a binary string may be
defined in many ways. A useful complexity measure may be
related to properties of the string’s non-cyclic auto-correlation.
Specifically, given an n-bit binary string, S, where:

niisS ��� 0)},({ ,
 and

iis ��� }1{)( .
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Define the non-cyclic auto-correlation, R, as:

niirR ��� 0)},({

where
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 From R, calculate the sequence’s non-negative power spectral
density, �i, by multiplying the Fourier transform of R by its
conjugate. The measure for binary string complexity that is
formed is denoted by � and is defined as

 
� ����

i
iifactornorm log.

1

.

   The motivation to this approach is found in the rich and
venerable field of synchronization sequence design. Sequences
that have an auto-correlation whose side-lobes are of very low
magnitude provide good defense against ambiguity in time
localization. Such an auto-correlation function will
approximate a “thumbtack” and its Fourier transform will
approximate that of band-limited white noise.
   The authors of this paper expect that � will be of utility in
assessing complexity as it relates to the compressibility of a
binary string. To begin the testing of this hypothesis, strings
are generated from the Markov process diagrammed in Figure
5.  A series of binary sequences of 8000 bits were generated,
each for different values of p. � was computed for each of
these strings and also packed into 1000-kilobyte files. These
were subjected to the UNIX compress routine. The Inverse
Compression Ratio (ICR) was computed which is the size of
the compressed file normalized to its uncompressed size, 1000
kilobytes in these cases.

-1+1

p

p

1-p 1-p

Figure 5. Markov model for string generation.

The hypothesis is that � and the ICR should vary in a similar
manner and that � might be a useful measure of sequence
compressibility and hence complexity. The graph in Figure  6
below seems to endorse this hypothesis and further research is
motivated.

.

Psi & ICR Versus p

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Psi
ICR

Figure 6. Variation of Psi and ICR with p.

    As the above results illustrate, the parameters of sequence
auto-correlation power spectral density and compressibility are
related and follow similar trends.  These fundamental metrics
are possible candidates for measuring trend of increase or
decrease in K(x).  However, also illustrated by these results
(the unequal rate of change between the two metrics) are the
loose bounds within which estimates of K(x) are related. Other
methods of estimating K(x) are described in [4].  In the next
section we introduce a method for attacking the issue of loose
bounds in order to make complexity metrics useful for the
purposes of assessing and providing information assurance

D. Examples
We present six 15-bit sequences and compute the values of

the three probes for each of them. The results are displayed in
Table 1. The sequences (a)-(f) are:

(a) the all zero sequence
(b) a sequence built from a simple basic

pattern
(c) – (e)
(f) an m-sequence, a phase of the sequence
produced by the primitive

     trinomial 134
�� xx .

ID Sequence Span Wait �
a 000000000000000 1 65534 0.30283
b 010101010101010 1 43690 0.15560
c 010010111001111 5 32768 0.43152
d 010011100010001 5 32772 0.41345
e 011110100110110 5 32770 0.41419
f 100010011010111 4 32770 0.38764

Table 1:   Probe Values for 6 15-bit Binary Sequences

    SPAN properties can be understood by the relationships
between tree nodes.   Figure 7 illustrates the binary tree
representation of the LZ78 partition for strings a and f from
Table 1.  As expected from previous analysis the tree for the
simple sequence a is narrow and deep, with only 5 phrases in



6

the partition, while the tree for the more complex sequence f is
shallow with 7 phrases.

0 1

0 0 11000000000000000 = 0,00,000,0000,00000

010101010101010 = 0,1,01,010,10,101,010

010010111001111 = 0,1,00,10,11,100,111,1

010011100010001 = 0,1,00,11,10,001,000,1

011110100110110 = 0,1,11,10,100,110,110

100010011010111 = 1,0,00,10,01,101,011,1

0 1

0 0 11

Figure 7:  LZ78 Partitions for 15 bit Binary Sequences

   Additional properties of binary trees can provide further
illumination and potential for complexity analysis.  Some
nodes in the binary tree contribute to other nodes or branches,
while certain nodes are disjoint, or are not part of the
production sequence of other nodes.  Disjoint nodes have
maximal SPAN (SPAN equal to their length).  The amount
that the SPAN of a particular phrase deviates from the
maximum represents the potential for a particular node to be
used to construct other phrases

1��� Lv
i

i

Lv
i

i ��

2��� Lv
i

i
pik vv �

1���� kLv
i

i

011101 010 000001100111 110

11 10 01 00

…………………………………………………………….

Disjoint Patterns

Non Disjoint Patterns

Figure 8: Identification of disjoint and non-disjoint patterns or
nodes for a binary tree of depth 3.

  Figure 8 illustrates these inherent relationships for a three
level binary tree.  The pattern 111 is non-disjoint, in that it can
be produced from a simple copy operation from the preceding

string 11, while the string 110 is disjoint and has maximum
span.  These and other conserved relationships inherent in
binary trees motivate the possibility of generating alternate
partitions of a binary string from an LZ78 partition.  A
complexity estimation algorithm based on finding the optimal
binary tree composition has been developed [4].  This
algorithm, entitled the Optimal Symbol Compression Ratio
algorithm (OSCR), will be partnered with LZ78 partitioning
and binary tree SPAN and other relationships to develop
improved complexity estimators in future work.

V. CONCLUSION

Use of LZ78 to estimate complexity can be performed more
computationally efficiently by concentrating on the size of the
partition.  An upper bound on the number of phrases in this
partition has been derived and a normalized LZ78 based
complexity estimation metric defined.  Alternate concepts for
evaluating and estimating complexity have been developed
and their relationships to one another explored.   Future work
will expand these results and consider optimal string partitions
as a method for achieving improved estimation of Kolmogorov
Complexity.
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